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Progress in the area of the Ising model roughening transition has previously 
been limited by the lack of a good definition for the interface separating the 
pure phases. In the present work, a graphical definition is introduced and it is 
shown that roughening occurs precisely when this interface fluctuates to infinity. 
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1. I N T R O D U C T I O N  

In 1972, Dobrush in  (1) showed that at low temperature in dimensions 
greater than 2, the two phases of an Ising model  can coexist in an 
equilibrium state which is not  translation invariant. Three years later this 
result was extended and greatly simplified by van Beijeren, (2) who used 
correlation inequalities to show that in d dimensions the phase coexistence 
is stable at least up to the ( d -  1)-dimensional critical temperature. 

Since the one-dimensional  critical temperature is zero, that  a rgument  
gives no informat ion about  two dimensions, and indeed it has been 
shown (3'4) that  all the Gibbs states of the two-dimensional  Ising model  are 
convex combinat ions  of the two pure phases (and, thus, translation invari- 
ant). 

In  the theory of crystal growth, it was postulated, by  Burton and 
Cabrera  (5) (1949) that the surface structure of a crystal, which is in 
equilibrium with its vapour,  would be radically different depending on 
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whether it was grown above or below a "roughening" temperature. In the 
context of the Ising model the corresponding question is whether in 
dimension greater than 2, the existence of states which are not translation 
invariant persists up to the critical temperature of the model, T C, or whether 
there exists an intermediate roughening temperature, T R, above which all 
states are translation invariant. 

Let At, M be the box of height 2M + 1 and cross section (2L + 1) d- 1 
centered at the origin in Z a. 

AL,M = { i  ~ Z  a l - M  < i 1 <~ M,  - L  < i,~ <~ L , a = 2  . . . .  , d }  

A natural way to impose phase coexistence is by the + boundary 
conditions, which were studied by Dobrushin. These amount to setting all 
of the spins in A C with i 1 /> 0 to be + 1, and those for which i 1 < 0 to be L,M 
- 1. In the case of a nearest-neighbor interaction, which will be considered 
here, it is only necessary to fix those spins in A C which have a nearest- L,M 
neighbor in AL, M. 

Let ( . ) { , M denote the Gibbs state induced in AL, M by the + bound- 
ary conditions, and denote by ( �9 5-+, the state obtained by taking 

lira lim (" >~M 
L--> oo M---> oo 

The roughening temperature T R is defined as 

sup( T I at the temperature T the state ( -  >-+ is not translation invariant) 

Clearly T R < T~. The main open question is whether there is a strict 
inequality in dimensions greater than 2. The expectation is that Tn. 3 < Tc, 3 

yet TR, d = T~, d for d >/4. 
The ( .  > -+ state is translation invariant if and only if the spontaneous 

magnetization vanishes. This was first shown by Messager and Miracle- 
Sole, (6) who used correlation inequalities. However it is also a simple 
consequence of the Holley version (7) of the F K G  inequality (s) and the 
observation that the "shift" of the ( .  >-+ state in the positive i I direction 
makes the state more positive in the F K G  sense. 

The expected mechanism for roughening is the following: at low 
temperatures one has a stable interface separating the pure phases. As the 
temperature is raised, the interface fluctuations increase and become un- 
bounded at the roughening temperature T R. For T e < T < T~, the inter- 
face would be found either far above or far below the origin, and the 
resulting state would be (/l+ + / z  ) /2 .  

Progress in this area has been limited by the lack of a good definition 
for the interface separating the pure phase. In this paper a graphical 
definition is introduced and it is shown that roughening corresponds 
precisely to the fluctuation of this interface to infinity. 
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Before proceeding, let us briefly describe the inadequacy of the exist- 
ing method for describing the interface. 

Consider the state { .  )~,M. If one associates spin configurations with 
contours in the usual way, then the + boundary conditions impose the 
existence of one long contour (or surface in dimension greater than 2) 
which is "tied down" at the i I = - 1/2 plane. This long contour is usually 
taken as the interface between the pure phases. 

This procedure was used by Dobrushin in his seminal work, and also 
in the proof of translation invariance in two dimensions. However, any 
candidate for the interface of phase separation should have the property 
that in the pure phases such surfaces do not occur. In two dimensions, the 
contours mentioned above do have this property, as was shown by Russo. (9) 
It is expected, however, that in the three-dimensional "plus" state infinite 
negative clusters will appear at temperatures above a "percolat ion" 
temperature Tp, 3 which is below T~, 3. If so, then above Te, 3 even the pure 
phases of the three-dimensional system would contain infinite contours. We 
therefore consider that these contours provide an unsatisfactory description 
of the interface of phase separation in three and more dimensions. 

It is conjectured that TR, 3 < Tp3. Bricmont, Fontaine, and Lebowitz (1~ 
have analyzed the consequences of this conjecture, and developed a de- 
scription of roughening based on it. 

In Section 2 we introduce a model of the interface in the Ising system. 
Our main result, which is in Section 3, is a theorem establishing the 
correspondence between the destabilization of this surface and the roughen- 
ing transition. 

Thus, while the main issue is still unresolved, we show how it can be 
given an exact geometrical formulation. 

2. D E S C R I P T I O N  OF THE I N T E R F A C E  

Throughout this paper, we are considering the nearest-neighbor Ising 
system. We begin this section with a brief review of a graphical method. 
The reader is referred to Refs. 11 and 12 and references cited therein for a 
more complete introduction. 

The system consists of spin variables, o s = _+ 1, associated with lattice 
sites i ~ Z d. Let A c Z d be a finite box. In the case of "free" boundary 
conditions, the Hamiltonian in A is given by 

--  HA,free ~- E J~ 
(0) 

i , j~A 

where J > O, and the symbol @') indicates a sum over nearest-neighbor 
pairs. 
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Each pair of nearest-neighbor sites will be referred to as a bond. The 
collection of all bonds  will be denoted by B. 

The parti t ion funct ion Z is given by 

z =  IIe Joi  
o i = _+ 1 ( / j )  

By expanding the exponentials 

e"S~ ~ ( BJ)n~(~ ] 
n b = 0 

and averaging over the {oi), one obtains 

z = 2 w ( . )  
~ n = , ~  

where n is an assignment of nonnegative integers to the bonds,  and the 
weight W(n) is given by 

W(n) = II  (BJ)~ 
b E B  

It  is convenient  to view (n b } as the unoriented fluxes of a current, and 
we regard 

o . =  . . . . . . .  1) 

as the set of sources of the flux configurat ion n. 
For  the correlation funct ion (oK), with o K = I-I k E K OX, a similar expan- 

sion leads to 

<~ = 2 W(n)/ 2 W(n) 
0 n = K  0 n = ~  

An assignment of fluxes n will sometimes be called a graph. We will 
say that s is a subgraph of n (s < n) if and only if s b < n b for all b. 

A path f r o m j  to k is a collection of bonds  b l , . . . ,  b s such that b~ ~ j ,  
b s ~ k and  b i and bi+ I have a site in c o m m o n  for i = 1 . . . . .  s - 1. 

We will say that n contains a path f rom j to k if there exists a path 
b I . . . . .  b s f r o m j  to k for which nb, > 0 for i = 1 . . . . .  s. 

An  important  tool is provided by the following result of Griffiths, 
Hurst,  and Sherman. (~3) 

L e m m a  (GHS).  Let K l and K 2 be sets of sites. Then 

W(n,) W(,,~) = ~ '  W(n,) W(n~) 
~n I = K 1 3 h i  = K I A K  2 

0 n 2 =  K 2 0 n 2 = ~  

where the pr imed summat ion  has the restriction that n, + n 2 contains a 
subgraph s with Os = K 2. (A indicates the usual symmetric  difference.) 
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We next consider the case of plus boundary conditions. The Hamil- 
tonian in A is now 

-HA,+= J(,,oj + Jo, 
(/j) {/j) 

i,j@A i @ A , j E A  C 

and the partition function is given by 

zA,+= Z E 11 
o-,= _+ 1 (~ )  {~)  

idEA i~A,jEA" 

There are now two types of bonds: those contained entirely in A, and 
those linking A with A C. 

Define 

~A = {j  ~ ac I there exists i ~ A with li - J i  --- 1} 

Expanding the exponentials as before one obtains 

ZA+= 2 W(.) 
3n\0A=0 

Note that now n is allowed to have sources, but only in 0A. 
One obtains a similar expression for the correlation functions. 
Finally, let us consider general boundary conditions, which are ob- 

tained by specifying a mixed configuration of spins in 0A. 
Parametrizing the boundary spin configuration by y, one obtains 

zA, = 2 W(n)(-1)'-(') 
On\OA=q) 

where n (~,) is the sum of fluxes going into negative boundary spins. 
Let us now turn to a discussion of the interface. 
As in Section 1, we consider 

AL,M= { i ~ Z d l - M  <. i 1 <~ M,  - L  <~ i~ <~ L , a = 2  . . . .  , d }  

and the + boundary conditions defined by fixing all of the spins in OAL, g 
for which i 1 ) 0 to be + 1, and those for which i I < 0 to be - 1. 

One has the following expression for the partition function in Ac, M 
with _+ boundary conditions: 

Z~,M = 2 W(n)(--  1)" 
an\OA =q) 

where n_ is the sum of fluxes going into boundary sites with i 1 < O. 
Graphical methods will now be used to write this expression in a 

manifestly positive form. 
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We will denote the collection of bonds which contain at least one site 
with i 1 < 0 by B'. The flux configuration in this region will be denoted by 
n'. The remainder of the flux configuration will be denoted by n as before. 

Using these conventions, we can write 

Z~M = ~ W ( . )  W ( , , ' ) ( -  1) ~'- (2.1) 
0 ( n + n ' ) \ ~ A = ~  

where n'_ is defined in the same way as n .  
We superimpose the bot tom half of At ,  g on the top half by reflecting 

( i l , i  2 . . . . .  i d ) ~  ( -  i ] , @ . . . ,  ia) for sites with i 1 < 0. This procedure is 
illustrated in two dimensions in Fig. 1. 

In this manner,  bonds in the lower half of Ac, M are paired with bonds 
in the upper half. Only bonds in the hyperplane i I = 0 are unpaired. We 
will call this hyperplane P0- 

We evaluate (2.1) by first summing over m ~ n + n', where we now 
view n' as the reflected source configuration and not the original one in the 
bot tom half of the box. Note that n and n' are allowed to have sources at 
the hyperplane P0: the condition is only that m have no sources there. 

The expression (2.1) may be written 

1 2 W(m) • I I  n' ( -  1)"'- (2.2) 
~m\3A = ~, n ' < m  b ~ B ' \  b /  

3n'X(3A UPo) = 0 

Suppose that m contains a path connecting a boundary site with i 1 :/= 0 to 
Po. Then we claim that the sum over n' in (2.2) is zero. To show this, we 
will use the symmetric difference trick as in Ref. 11. 

With the given m, we associate a graph M which, for each b = (x, y ), 
consists of m b distinct lines connecting the sites x and y. We will use the 

4- 4- 4- 4- 4- 

4- 
m 

4- 

4 - -  4 - -  4 - -  4 - -  4 - -  

t 

�9 D 4 -  L 

I - 

m m ~ - -  

Fig. 1. Superposi t ion of the bo t tom half of AL, M on the top half. 
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notation N ~< M to indicate that N is a subgraph of M. Primed subgraphs 
will have the property that all of their lines contain sites with i I ~ 0. N 
will be the total flux into sites of 0A with negative spins. 

The combinatoric factors are such that 

m b 

On'\(OA UPo)=~ 

equals 

]{N' < M] ON'\(OA UP0) = 0, N'_ is even)[ 

-]{N' < M[ 0N'\(0AUPo) = 0, N '  is odd}l 
(Here ]A[ denotes the cardinality of the set A.) 

Our assumption on m implies that there exists K ' 4  M with OK' 
consisting of two sites: one an element of OA\P 0, and the other an element 
of P0. 

We may use K' to set up a bijection between the above two collections. 
Define 

AK,: { i '  ~< MI ON'\(OAUPo) = ~, N '  is even} 

---) (N' ~< M I 0N'\(0A UPo) = ~, N "  is odd} 

via AK,(N' ) = N'AK'. 
The map A K, changes the value of N'_ by exactly one and is clearly a 

bijection, thus proving the claim. 
We are left with graphs m that contains no path between P0 and 

0A\P  0. Moreover, all of these graphs contribute to the sum with a positive 
sign. To see this, note that from flux conservation, any sources must occur 
in pairs, and that the above condition precludes a negative boundary spin 
from being connected to a positive one. 

The restriction on m may be given a geometric interpretation as 
follows: On each bond b with m b = 0, place a plaquette on the midpoint of 
the bond, oriented such that b is perpendicular to the surface of the 
plaquette. (In d dimensions, the plaquettes are ( d -  1)-dimensional hy- 
persquares.) Since there is no connection between P0 and OA\Po, these 
plaquettes must link up to form a surface, which we will call a "null 
surface," separating these sets. Note that, in particular, the boundary spins 
in the i 1 = 1 layer are separated from P0. Thus, the null surface is "tied 
down" at the box's edge at i 1 = 1//2. We restrict our attention to null 
surfaces which "enclose no volume." These are null surfaces with the 
property that every site i ~ AL, M may be connected to either 0A\P  0 or to 
P0 by a path which does not cross the null surface. A two-dimensional null 
surface is shown in Fig. 2. 
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s e p a r a t  i n g PO 

4- f r o m ( ) A ' ~  P 0 

A two-dimensional null surface. 

Hence the partition function Z~A 4 may be written 

+ (rob) 
ZLTM = E *  W(m) E E n; 

~m\OA=(~ n ' < ; m  b c B '  
0n ' \ (0A UPo) = ~, 

where the asterisk (*) refers to the restriction that m contains a null surface 
separating OA\P 0 from Po. 

In general, a given configuration m may contain several such null 
surfaces. However, it will contain only one uppermost null surface, charac- 
terized by the following property: 

Let S be a null surface separating P0 from 0A\P  0, and suppose that S 
consists of plaquettes p~ . . . . .  Ps breaking bonds b l , . . . ,  b s. We will say 
that S is the uppermost null surface appearing in m if for all i = 1 . . . . .  s, 
b~ contains exactly one site that is connected to a A \ P  0 by a path in m. 

This definition of the uppermost null surface appearing in m may be 
visualized as follows. Let Cm(aA\Po) be the set of sites that may be reached 
from a A \ P  0 by paths in m. Of course, 0A\PoC_ Cm(0A\P0). Let 
CmV(0A\P0) be the volume obtained by taking the union of unit cells 
centered around elements of C~,(0A\P0). The boundary of this volume will 
consist of a null surface separating a A \ P  0 from P0, plus a number of 
isolated "bubbles" of null surface, which may be large depending on the 
configuration m. Geometrically, the uppermost null surface is the boundary 
of cv(oA\P0)--excluding all of the bubbles. 

The main result presented here is that the uppermost null surfaces 
fluctuate to infinity precisely at the roughening transition. It has already 
been shown that one may use this construction to give a graphical proof of 
van Beijeren's theorem on the existence of states that are not translation 
invariant.(14) We submit that the random currents, which are bounded by 
null surfaces, describe in a rather exact sense the elementary excitations 
which produce spin correlations. 
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3. CORRESPONDENCE WITH THE ROUGHENING TRANSITION 

In this section we will show the connection between the uppermost null 
surfaces found in the last section and the roughening transition. 

Clearly, the uppermost null surface (u.n.s.) in AL,~t intersects the box 
AN, N if and only if there exists a site i E AN, N and a path I" i from i to 
OALy\P o such that !~ i does not cross the surface. 

Let RL,M(N ) be the probability that the u.n.s, in AL, M intersects AN, N . 
By definition 

(mb) y)* w(m) E l'I n; 
0 m \ 0 A = q ~  n ' < m  b E B "  

RL, M ( N )  = an'\0A UPo)= ~, (3.1) 

2* w(m) Z II 
Om\SA =~> n ' < m  b ~ B '  

8 n ' \ ( 0 A  UPo) = q, 

The single-asterisk summation satisfies the same restriction as in (2.3), and 
the double-asterisk summation satisfies the additional restriction that the 
u.n.s, intersects AN, N. 

We prove as our main result: 

Proposition 3.1. For any temperature such that the pressure P 
= (1//~)limA_~o~(l/]A[)ln Z of a nearest-neighbor Ising model is differentia- 
ble, we have 

(i) lira lira RL,M(N) = 0 
L ~ o o  M---) ov 

for all N implies that the ~ �9 ) -+ state is translation invariant, and conversely 

(ii) lira lira RLM(N) > 0 
L--> oo M --) ov ' 

for some N, implies that the state ( . )  -+ is not translation invariant. 

In the proof, we will make use of the following result due to Lebo- 
witz.(15) 

Theorem (Lebowitz). Let Jo be a finite-range, translation invariant 
interaction such that J,j > 0 for l i - Jl = 1, and let h = 0. Then the existence 
of (dP/dt~)[~o implies that all translation invariant states agree with the 
plus state on even correlation functions at inverse temperature fl0. 

Before proving Proposition 3.1, the main ideas behind the construction 
will be summarized. Graphical methods have permitted us to express the 
partition function in the manifestly positive form (2.3). Each m contributing 
to the sum contains a unique uppermost null surface S. The partition 
function may be evaluated by summing first over configurations m satisfy- 
ing "S  is the uppermost null surface appearing in m," and then over S. 
Consider "unfolding" the system by undoing the reflection (il, i 2 . . . . .  ia) 
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-+ ( -  il, i 2 ,  �9 �9 �9 , id) for i 1 < 0. The null surface S together with its reflection 
S R combine to separate a "fat" ( d -  1)-dimensional system surrounding 
the origin from the rest of the d-dimensional system. This procedure is 
illustrated in Fig. 3. The choice of the uppermost null surface insures that 
the partition function for the central region is unconstrained. 

We now take the infinite volume limit, and consider two cases. First 
suppose that the uppermost null surface fluctuates to infinity. In this case, 
the central system becomes d dimensional, and is between the plus and 
"free" states in the F K G  sense. Correlation inequalities and the Lebowitz 
theorem may be combined to show that the resulting state is translation 
invariant. 

Now suppose that the uppermost null surface has a nonzero probabil- 
ity of passing a finite distance from the plane P0. In this case, stable local 
interfaces exist and it is easy to show that the state cannot be translation 
invariant. 

The first step in proving Proposition 3.1 is to derive an expression for 
(oyo/)~, M, where y = ( Y l ,  Y2 . . . .  , Ya)  is any site with Yl > O, and y '  = 

( - Y l ,  Y2 . . . . .  Ya). 

AN'N 

\ 
S AL, M 

F i g .  3. T h e  " + ,  f r e e "  b o u n d a r y  c o n d i t i o n s .  
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In analogy with (2.2), we have 

+ + (mb~ 
Z~M(~176 = Z W(m) ~ ]-[ - 1) ' ;  (3.2) 

8 m \ S A = 0  n ' < m  b c B '  rl; 1 (  
8n'k(SA UPo)= y' 

As before, if m does not contain a null surface separating 0 A \ P  0 from 
P0, the net contribution is zero. For graphs m containing a null surface, the 
contribution to (3.2) is positive if the u.n.s, passes abovey ,  but negative if it 
passes below y, since in the latter case y' must be connected to a source on 
the negative boundary. 

Hence, (3.2) may be written 

(mb) E' w(m) Z II ,; 
8m\OA~@ n ' < m  b ~ B '  

8n'\(SA UPo)= y' 

- Z" w(m) E .; 
Om\OA=G n ' < m  b ' 

8n'k(SA UPo) = y' 

In the single primed summation, the u.n.s, passes above y, while in the 
double primed summation it passes below y. 

We may now use the symmetric difference trick to write the second 
term as 

E"' W(m) E I-I n; 
8 m \ 0 A = 0  n ' < m  b E B '  

8n'k(8A UPo) = @ 

The triple primed summation includes only graphs m such that the u.n.s. 
passes be lowy  and m contains at least one path f rom) ,  to 8 A \ P  0. 

<.yo/>L~, = 

Finally, 

(mb) ~ '  W(m) Z ~ .; 
8mkSA=~ n ' < m  b ' 

~n'\(SA UPo) = y' (mb) E* W(m) E I-[ n• 
0m\OA=@ n ' < m  b ~ B '  

8n'X(OA UPo) = 

- Prob(y--> 0A\Po] 3 a n.s.) (3.5) 

The last term is by definition the ratio of (3.4) to (2.3). Since the source 
constraints in numerator  and denominator  are the same, we have expressed 
it as the probabili ty that m connects y to 8 A \ P  0, conditioned on the 
existence of a null surface separating P0 from 8 A \ P  0. 
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The proof of Proposition 3.1 relies on the following two lemmas, which 
are based on (3.5). 

Lemma 3 . 2 .  For any N < min (L ,M)  such t h a ty  ~ AN, N we have 

§ free 
<ayay,)Z,M >/ (aya/)N,N(l - RL,M(N)) - RL,M(N ) 

Lemma 3 . 3 .  Let N be as in Lemma 3.2. Then 

(OyO;)L+-M <4 (OyO~)L+,M -- Prob(y  -+ 8A\P  013 a n.s. ) 

The proofs of these lemmas are deferred to the end of this section. We 
first show how Proposition 3.1 follows from these results. An outline of the 
argument will be given, followed by the proof. 

If the probability of the uppermost null surface intersecting a finite 
box is vanishingly small, then Lemmas 3.2 and 3.3 combined with the 
Lebowitz theorem show that (~yo/)  +- = (oy~/)  +. Correlation inequalities 
may now be used to deduce that the magnetization vanishes, and thus that 
the state is translation invariant. 

If, on the other hand, there is a positive probability of the uppermost 
null surface passing through a finite box, Lemma 3.3 shows that ( e y e / )  -+ 
v a (oyay,) +. The Lebowitz theorem may now be used to conclude that the 
( �9 )-+ state is not translation invariant. The details of the proof will now be 
given. 

Proof  o f  Proposi t ion 3.1 (assuming the lemmas). 
(i) Suppose that/3 is such that dP/d/3 exists and that 

lira lim RL,M(N ) = 0 for all N 
L----~ ~ M - - ~ e  

Let e > 0, and let y be any site with Yl > 0. Choose N so large that 
Y ~ AN N and " . f  . . . . .  free , <~OyOy,/~ - -  ~OyOy,)N,N < IE/3.  

By hypothesis, there exist subsequences {M,} and {Lk) such that 
limk_+~limn~RLk,M,,(N) = 0. Fix a subsequence, and choose K such that 
k > K implies l im,_,~RLky,(N ) < e/3.  

Let k > K. From Lemma (3.2), 

(Oyoy.)L,,M. > ((OyOy,) f . . . .  . / 3 ) (1  -- RL~,M.(N)) -- RLk,M.(N), and hence, 

lira <oy./>L,Mo >/<oyo/> f'e~ 

Since limL_~ojimM__,~(OyO/)[, M is known to exist from correlation 
inequalities,(2. 6) we can conclude 

+ / " , f ree <oyoy,>- >~ ~%%,,, 
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On the other hand, Lemma 3.3 immediately shows that 

(~,yo/5• < <o~o/5 + 

Since the plus and free states are both translation invariant, we have 
from Lebowitz's theorem that 

<o/ , /5  • = <o~o/5 + 

The new Lebowitz inequality (15) implies that 

< o y o / 5  + - < o y o / 5  • t> f<oy,5 + <oy5 + - < ~ / 5 •  <oy)+f  

= <o~5 + I<oy5 +- - <~r I 

Hence (oy) -+ = (o / )  -+. 
Now, since (oy) -+ /> 0 and (o / )  -+ ~< 0, we have (o r )  -+ -- 0 = (o / )  -+. 
This shows that (Oy) • = 0 for all y with Yl =/= 0, but  it is easy to see 

that this condition implies (oy) • = 0 for all y. 
Hence the ( . ) -+  state is translation invariant. 
(ii) Now suppose that dP/dfl  exists and that limlimR L M(N) = 6 > 0 

for some N. 
Then there exists y E AN, N such that 

E y W(m) 2 I-I n; 
8m\SA=~ n'~<m b E B '  

lira lira ~176176 >/ ~ > 0 

n 
8m\SA=@ n'~<ra bEB"  lab 

On'k(SA UPo) = 

for some 7/. In the numerator, the u.n.s, is constrained to pass immediately 
below y.  From the definition of u.n.s, this condition forces m to connect y 
to 8 A \ P  0. Hence l imr-+MimM-,~Prob(y~ 0A[3 a n.s.) >/ 7, and Lemma 
3.3 shows that 

(oyo / )  +- ~< <oyo,)  + - ~  

Hence ( - ) •  is not translation invariant. II 

Proof of Lemma 3.2. Our starting point is Eq. (3.5). If y ~ 0AkP0, 
and y ~ A N , N ,  then the u.n.s, must, by definition, intersect AN,  u .  Hence 

P r o b ( y ~ 0 A \ P 0 1  3 a n.s.) < RL,M(N ) 
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It is, therefore, enough to show 

0mX~A=,~ n ' ~ m  b ~ B '  rib 
an'\(OA UPo)= y" 

0mk0A=~ n ' < m  b ' 
On' \(O A UPo) = r 

(3.6) 

/ O  \free (1 >1 \ yay,)g,N --RE, M(N)) 

The asterisk summation obeys the restriction that there exists a null surface 
separating P0 from OA\P 0, and in the primed summation, the surface is 
constrained to pass above y. 

The numerator in the left-hand side of (3.6) is not smaller than 

E N" W(m) E I-[ n,~ 
0m\0A=q~ n ' < m  b ~ B '  

0n'\(0A UPo) = y" 

where the symbol N -  denotes the restriction that the u,n.s, does not 
intersect AN, N. Hence the left-hand side of (3.6) is bounded below by 

E N~ W(m) E 1[ n; 
~m\0A=~, n ' < m  b ~ B "  

0n'\OAVP0)=y' (1 -- RL,M(N)) (3.7) 

E N" W(m) E l-I 
0mkOA = (/, n ' < m  b ~ B "  

0nk(0A UPo) = 4' 

These sums will now be evaluated by conditioning on the event "the 
u.n.s, appearing in the configuration m is S," and then summing over 
surfaces S which do not intersect AN, N. Further, we will use S to divide 
AL, m into two regions, the region above S (denoted by the subscript a) and 
the region below S (denoted by d). The restriction "S is the u.n.s." 
introduces a constraint on the allowable configurations of fluxes above S, 
but the region below S is unconstrained. 

Equation (3.7) becomes 

(m,) 2 ~-~S=u.n.s. W(m) 2 ~II B n' 2 W(m) 2 
S ~m~\OA=,p n~ <m~ b " bo ~md\OA=r n~<.md 

0n~\0A=,p 0n~r P0=y' 

j 

E ES=u'n's 'w(m) E ]-I n' E W(m) E 1 ~ ,  [r%~tn, ' 
S Om~\~A=~ na~mo b@B" b~ Omd\aA=~ n~/~rn d b c B ' \  b d ]  

0n~\0A=~ 0n~,\Po=,~ 

• (1 - RL,M(N)) (3.8) 
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Now write 

n) < md 
3n)\ Po= y" 

[mq 

na-<md b ~ B' ~ l'lPba 
3n~,\ Po = 

n) < ma 
8n~,\Po=y' 

( mb~ 
E 11 n, I 

n~,~<m a b~B" bd ] 
3n~,\ e o  = q' 

(3.9) 

If we now "unfold the system, i.e., undo the reflection (il,i2 . . . . .  id) 
- -~(- i t , i2 , . . .  ,i~) for i 1 < 0 ,  the expression in brackets becomes 

\+,tree Let S R denote the reflection of S in the plane Po- Then Oy Oy')below S" 
"'below S" indicates the symmetric region bounded by S, S R, and OA. The 
boundary conditions " + ,  free" are illustrated in Fig. 3. They consist of plus 
boundary conditions on the plane P0 and free boundary conditions at the 
surfaces S and S ~. 

From the GKS inequalities (16) we have 

.+ , f ree  / ~ \free ( 3 . 1 0 )  
OyOy')below S ) (~gv v'/N,N 

Substituting (3.10) in (3.9), and the result in (3.8) establishes the lemma. I 

Proof of Lomma 3.3. From (3.5), it is enough to show that 

y/ W(m) E , , ;  
3 m \ 3 A = ~  n ' < m  b ' 

3n'\(SA UFo) = y' 
.<. (3.11) (') E *  W(m) E 1~ n; 

3rn\aA=4~ n'-.<< m b~B"  
8n'k(OA UPo) = ~ 

The left-hand of (3.11) is bounded above by the expression one obtains 
by replacing the starred summation in the denominator by a primed 
summation with the same source constraints, The resulting expression may 
now be evaluated by the method used to obtain (3.8). An application of the 
upper bound 

\ + ,free 
(7yO;,/,)betow S • <%5">~i~/ 

leads immediately to (3.11). [] 
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